2.4       Isotope dilution

 

Isotope dilution is generally agreed to be the supreme analytical method for very accurate concentration determinations. In this technique, a sample containing an element of natural isotopic composition is mixed with a ‘spike’ solution, which contains a known concentration of the element, artificially enriched in one of its isotopes. When known quantities of the two solutions are mixed, the resulting isotopic composition (measured by mass spectrometry) can be used to calculate the concentration of the element in the sample solution. The element in question must normally have two or more naturally occurring isotopes, one of which can be enriched on a mass separator. However, in some cases a long-lived artificial isotope is used.

 

 

2.4.1 Analysis technique

 

            Before use, the isotopic composition of a ‘spike’ must be accurately determined by mass spectrometry. This measurement cannot be normalized for fractionation, because there is no ‘known’ ratio to use as a fractionation monitor. Therefore, several long runs are generally made, from which the average midpoint of the run is taken to be the actual spike composition. The concentration of the spike is generally determined by isotope dilution against standard solutions (of natural isotopic composition) whose concentrations are themselves calculated gravimetrically. Metal oxides are generally weighed out, but if these are hygroscopic (e.g. Nd2O3) then accurate weighing requires part of a metal ingot.

 

            A simple example of isotope dilution analysis is the determination of Rb concentration for the Rb)Sr dating method. Typical mass spectra of natural, spike, and mixed solutions are shown in Fig. 2.21.

Fig. 2.21. Summation of spike (hatched) and natural ion beams to generate aggregate mixed peaks, as illustrated by rubidium isotope dilution.

 

            In the mixture, each isotope peak is the sum of spike (S) and natural (N) material. Hence,

 

    87Rb                         moles 87N + moles 87S

    )))   =  R  =           )))))))))))))))                                   [2.6]

    85Rb                         moles 85N + moles 85S

 

But the number of moles of an isotope is equal to the number of moles of the element as a whole, multiplied by the isotopic abundance. If the total number of moles of natural and spike Rb are represented by MN and MS, then:

                          MN @ %87N   +   MS @ %87S

                R   =    )))))))))))))))))                                      [2.7]

                          MN @ %85N   +   MS @ %85S

 

where percentages indicate the isotopic abundances in the spike and natural solutions. This equation is rearranged in the following steps:

 

    R ( MN @ %85N  +  MS @ %85S )  = MN @ %87N  +  MS @ %87S

 

    R @ MN @ %85N  +  R @ MS @ %85S  = MN @ %87N  +  MS @ %87S

 

    R @ MN @ %85N  !  MN @ %87N  =  MS @ %87S  !  R @ MS @ %85S

 

    MN ( R @ %85N  !  %87N )  =  MS ( %87S  !  R @ %85S )

 

                                     ( %87S    !  R @ %85S )

    MN    =    MS  @         )))))))))))))))                                  [2.8]

                                     ( R @ %85N   !   %87N )

 

If we insert figures for the isotopic abundance of natural Rb, and the isotopic abundance of a typical spike, such that 27.83/72.17 is the natural 87Rb/85Rb ratio, and 99.4/0.6 is the spike 87Rb/85Rb ratio, then the number of moles of the natural Rb is given by:

 

                  (99.4   !   R @ 0.6)

         MN  =   )))))))))))  @  MS                                                 [2.9]

                  (R @ 72.17  ! 27.83)

 

where R is the measured isotope ratio.

 

But number of moles = molarity H mass, so the molarity of the natural sample is given by:

                         (99.4   !   R @ 0.6)           wtS

MolarityN   =    ))))))))))))    @   )))  @  MolarityS                    [2.10]

                        (R @ 72.17  ! 27.83)         wtN

 

Molarity is then multiplied by atomic weight to yield concentration:

 

                                    (99.40  !  R @ 0.6)         wtS     Conc.S

ConcN = At. wtN @         )))))))))))))  @  ))   @   )))               [2.11]

                                    (R @ 72.17 ! 27.83)       wtN     At.wt.S

 

Because there are only two isotopes of Rb, no internal correction for fractionation is possible in the measurement of 87Rb/85Rb. However, in the isotope dilution analysis of Sr, fractionation correction based on 88/86 measurement is possible, which allows a much more accurate 84/86 (spike Sr / natural Sr) measurement to be made.

 

            Isotope dilution is potentially a very high-precision method. However, error magnification may occur if the proportions of sample to spike which are mixed are far from unity (Fig. 2.22). Consequently, it is generally believed that the analysed peaks in an isotope dilution mixture should have an abundance ratio of close to unity. In actual fact, the ideal composition of the mixture is half-way between that of the natural and spike compositions. However, the best precision normally required in an isotope dilution analysis is ca. 1 per mil (0.1 %), which is two orders of magnitude worse than the precision normally achieved in Sr or Nd isotope ratio measurements. Hence, significantly non-ideal spike)natural mixtures can be tolerated in normal circumstances.

 

Fig. 2.22. Estimates of error magnification in isotope dilution analysis as a function of the total number of moles of sample/spike. Cases are shown for different percentages of spike isotope enrichment, mixed with a natural sample with a 50)50 isotopic abundance ratio. After DeBievre and Debus (1965).

 

            The only other sources of error in isotope dilution analysis are incomplete homogenisation between sample and spike solution, and weighing errors. The first of these can be overcome by centrifuging the sample solution to check for any undissolved material, and repeating the dissolution steps as necessary until complete solution is achieved. Given sufficient care, including the use of non-hygroscopic standard material and correct balance calibration, spike solutions can be calibrated to 0.1% accuracy (Wasserburg et al., 1981). The use of mixed spikes (e.g. Sm)Nd, Rb)Sr) then eliminates further weighing errors in the analysis of these ratios in sample material. The result is that isotope dilution accuracy can exceed 1% with ease, and 0.1% if necessary. This compares very favourably with all other methods of concentration determination.

 

 

2.4.2    Double spiking

 

The selection of an arbitrary non-radiogenic ratio for fractionation normalisation (e.g. 88Sr/86Sr = 8.37521) results in no loss of information for terrestrial samples. However, for meteorites, use of such a procedure means that the true isotopes responsible for certain anomalous isotope ratios cannot be uniquely identified. An example is provided by inclusions EK 1-4-1 and C1 of the Allende chondritic meteorite (Papanastassiou et al., 1978), for which several mixing models of nucleosynthetic components are possible (e.g. Clayton, 1978).

 

            The double-spike isotope dilution technique can be used to overcome this problem by correcting for fractionation in the mass spectrometer source, thus allowing comparison between all of the isotope ratios in a suite of samples, including those used for fractionation normalisation. The theory of double spiking was first investigated in detail by Dodson (1963). The calculations may be made iteratively (e.g. Compston and Oversby, 1969) or algebraically (e.g. Gale, 1970). However, it is not usually possible to calculate ‘absolute’ values of isotopic abundance because there is not normally any absolute standard to calibrate the double spike.

 

            Double spiking has been used to study processes of Sr isotope fractionation in the solar nebula, as sampled by inclusions and chondrules in the Allende meteorite, relative to the composition of all terrestrial samples (Patchett, 1980). 88Sr/86Sr versus 84Sr/86Sr variations were found to fit a mass fractionation line very well (Fig. 2.23). Ca)Al inclusions were enriched in the lighter isotopes of Sr, which is surprising, since these inclusions are thought to be relatively early condensates from the nebula, which should therefore be enriched in heavy isotopes. The simplest explanation for the effect is that the inclusions condensed from an isotopically light region of the nebula.

 

Fig. 2.23. Plot of 88Sr/86Sr against 84Sr/86Sr for samples from Allende chondrules. Instrumental mass fractionation has been corrected using a double-spike algorithm. After Patchett (1980).

 

            Several workers have investigated the use of double Pb spikes to allow within-run mass fractionation correction of Pb isotope ratios. Most of these studies utilised double stable isotope spikes such as 207Pb)204Pb (Compston and Oversby, 1969; Hamelin et al., 1985), which necessitate two separate mass spectrometer runs, one with spike and one without. This is because the spike interferes with the determination of natural 207Pb and 204Pb. In contrast, the use of a 202Pb/205Pb double spike allows both concentration determination and a correction for analytical mass fractionation to be made on a single Pb mass spectrometer run (Todt et al., 1996). These isotopes are difficult to manufacture, but the procedure for 205Pb was described by Parrish and Krogh (1987). The double spiking technique has not been widely used for Pb, because between-run fractionation has been successfully controlled by the silica gel loading technique. In addition, the double-spike method may cause error magnification if the spike/sample ratio is not close to optimal, or if the mass spectrometer run is not of high precision (Fig. 2.24).

Fig. 2.24. Error propagation in Pb double-spike analysis. (a) Effect of differing proportions of spike to natural Pb; (b) effect of within-run precision. After Hamelin et al. (1985).

 

            More recent work on double spike TIMS Pb analysis has been done by by Powell et al. (1998), Galer (1999) and Thirlwall (2000). However, the advent of plasma source mass spectrometry has offered an alternative approach for fractionation correction in the analysis of common Pb (see below).

 

 

References

 

Arden, J. W. and Gale N. H. (1974). New electrochemical technique for the separation of lead at trace levels from natural silicates. Anal. Chem. 46, 2)9.

 

Aston, F. W. (1919). A positive ray spectrograph. Phil. Mag. (Series 6), 38, 707––14.

Aston, F. W. (1927). The constitution of ordinary lead. Nature 120, 224.

 

Barovich, K. M., Beard, B. L., Cappel, J. B., Johnson, C. M., Kyser, T. K. and Morgan, B. E. (1995). A chemical method for hafnium separation from high-Ti whole-rock and zircon samples. Chem. Geol. (Isot. Geosci. Sect.) 121, 303–8.

 

Blichert-Toft, J., Chauvel, C. and Albarede, F. (1997). Separation of Hf and Lu for high-precision isotope analysis by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 127, 248–60.

 

Brooks, C., Wendt, I. and Harre, W. (1968). A two-error regression treatment and its application to Rb)Sr and initial Sr87/Sr86 ratios of younger Variscan granitic rocks from the Schwarzwald massif, Southwest Germany. J. Geophys. Res. 73, 6071)84.

 

Brooks, C., Hart, S. R. and Wendt, I. (1972). Realistic use of two-error regression treatments as applied to rubidium-strontium data. Rev. Geophys. Space Phys. 10, 551)77.

 

Cameron, A. E., Smith, D. H. and Walker, R. L. (1969). Mass spectrometry of nanogram-size samples of lead. Anal. Chem. 41, 525)6.

 

Cassidy, R. M. and Chauvel, C. (1989). Modern liquid chromatographic techniques for the separation of Nd and Sr for isotopic analyses. Chem. Geol. 74, 189)200.

 

Catanzaro, E. J. and Kulp, J. L. (1964). Discordant zircons from the Little Butte (Montana), Beartooth (Montana) and Santa Catalina (Arizona) Mountains. Geochim. Cosmochim. Acta 28, 87)124.

 

Chen, J. H. and Wasserburg, G. J. (1981). Isotopic determination of uranium in picomole and sub-picomole quantities. Anal. Chem. 53, 2060)7.

 

Christensen, J. N., Halliday, A. N., Godfrey, L. V., Hein, J. R. and Rea, D. K. (1997). Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science 277, 913–8.

 

Clayton, D. D. (1978). On strontium isotopic anomalies and odd-A p-process abundances. Astrophys. J. 224, L93)5.

 

Collerson, K. D., Kamber, B. S. and Schoenberg, R. (2002). Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS. Chem. Geol. 188, 65–83.

 

Compston, W. and Oversby, V. M. (1969). Lead isotopic analysis using a double spike. J. Geophys. Res. 74, 4338)48.

 

Cotte, M. (1938). Recherches sur l’optique electronique. Ann. Physique 10, 333)405.

 

Crock, J. G., Lichte, F. E. and Wildeman, T. R. (1984). The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography. Chem. Geol. 45, 149)63.

 

Croudace, I. W. (1980). A possible error source in silicate wet-chemistry caused by insoluble fluorides. Chem. Geol. 31, 153)5.

 

Crumpler, T. B. and Yoe, J. H. (1940). Chemical Computations and Errors, Wiley, pp. 189)90.

 

Daly, N. R. (1960). Scintillation type mass spectrometer ion detector. Rev. Sci. Instrum. 31, 264)7.

 

David, K., Birch, J. L., Telouk, P. and Allegre, C. J. (1999). Application of isotope dilution for precise measurement of Zr/Hf and 176Hf/177Hf ratios by mass spectrometry (ID–TIMS/ID–MC–ICP–MS). Chem. Geol. 157, 1–12.

 

Davis, D. W. (1982). Optimum linear regression and error estimation applied to U)Pb data. Can. J. Earth Sci. 19, 2141)9.

 

Dawson, P. H. (1976). (Ed.), Quadrupole Mass Spectrometry and its Applications. Elsevier, 349 p.

 

DeBievre, P. J. and Debus, G. H. (1965). Precision mass spectrometric isotope dilution analysis. Nucl. Instrum. Meth. 32, 224)8.

 

Dempster, A. J. (1918). A new method of positive ray analysis. Phys. Rev. 11, 316-24.

 

DePaolo, D. J. and Wasserburg, G. J. (1976). Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249)52.

 

Dickin, A. P., Jones, N. W., Thirlwall, M. and Thompson, R. N. (1987). A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Skye, NW Scotland. Contrib. Mineral. Petrol. 96, 455)64.

 

Dodson, M. H. (1978). A linear method for second-degree interpolation in cyclical data collection. J. Phys. E (Sci. Instrum.) 11, 296.

 

Dodson, M. H. (1963). A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionisation technique: Part I - General first-order algebraic solutions. J. Sci. Instrum. 40, 289)95.

 

Dosso, L. and Murthy, V. R. (1980). A Nd isotopic study of the Kerguelen islands: inferences on enriched oceanic mantle sources. Earth Planet. Sci. Lett. 48, 268)76.

 

Eberhardt, A., Delwiche, R. and Geiss, J. (1964). Isotopic effects in single filament thermal ion sources. Z. Natur. 19a, 736)40.

 

Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987). 238U)234U)230Th)232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 81, 175)92.

 

Eugster, O., Tera, F., Burnett, D. S. and Wasserburg, G. J. (1970). The isotopic composition of gadolinium and neutron capture effects in some meteorites. J. Geophys. Res. 75, 2753)68.

 

Faul, H. (1966). Ages of Rocks, Planets, and Stars. McGraw-Hill, 109 p.

 

Gale, N. H. (1970). A solution in closed form for lead isotopic analysis using a double spike. Chem. Geol. 6, 305)10.

 

Galer, S. J. G. (1999). Optimal double and triple spiking for high precision lead isotopic measurement. Chem. Geol. 157, 255)74.

 

Habfast, K. (1983). Fractionation in the thermal ionization source. Int. J. Mass Spectrom. Ion Phys. 51, 165)89.

 

Halliday, A. N., Lee, D.-C., Christensen, J. N., Rehkamper, M., Yi, W., Luo, X., Hall, C. M., Ballentine, C. J., Pettke, T. and Stirling, C. (1998). Applications of multiple collector- ICPMS to cosmochemistry, geochemistry, and paleoclimatology. Geochim. Cosmochim. Acta 62, 919)40.

 

Hamelin, B., Manhes, G., Albarede, F. and Allegre, C. J. (1985). Precise lead isotope measurements by the double spike technique: a reconsideration. Geochim. Cosmochim. Acta 49, 173)82.

 

Hooker, P., O’Nions, R. K. and Pankhurst, R. J. (1975). Determination of rare-earth elements in U.S.G.S. standard rocks by mixed-solvent ion exchange and mass spectrometric isotope dilution. Chem. Geol. 16, 189)96.

Horn, I., Rudnick, R. L. and McDonough, W. F. (2000). Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chem. Geol. 164, 281–301. (Erratum = vol. 167, 405–25.)

 

Houk, R. S. (1986). Mass spectrometry of inductively coupled plasmas. Anal. Chem. 58, 97A–105A.

 

Houk, R. S., Fassel, V. A., Flesch, G. D., Svec, H. J., Gray, A. L. and Taylor, C. E. (1980). Inductively coupled argon plasma for mass spectrometric determination of trace elements. Anal. Chem. 52, 2283–9.

 

Ingram, M. G. and Chupka, W. A. (1953). Surface ionisation source using multiple filaments. Rev. Sci. Instrum. 24, 518)20.

 

Kalsbeek, F. and Hansen, M. (1989). Statistical analysis of Rb)Sr isotope data by the ‘bootstrap’ method. Chem. Geol. (Isot. Geosci. Section) 73, 289)97.

 

Krogh, T. E. (1973). A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochim. Cosmochim. Acta 37, 485)94.

 

Kuritani, T. and Nakamura, E. (2002). Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem. Geol. 186, 31–43.

 

Kurz, E. A. (1979). Channel electron multipliers. Amer. Lab. 11 (3), 67)74.

 

Lee D.-C. and Halliday, A. N. (1995). Precise determinations of the isotopic compositions and atomic weights of molybdenum, tellurium, tin and tungsten using ICP source magnetic sector multiple collector mass spectrometry. Int. J. Mass Spec. Ion Process. 146/147, 35–46.

 

Li, W. X., Lundberg, J., Dickin, A. P., Ford, D. C., Schwarcz, H. P., McNutt, R. H. and Williams, D. (1989). High-precision mass spectrometric uranium-series dating of cave deposits and implications for paleoclimate studies. Nature 339, 534)6.

 

Luais, B., Telouk, P. and Albarede, F. (1997). Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochim. Cosmochim. Acta 61, 4847)54.

 

Ludwig, K. R. (1980). Calculation of uncertainties of U)Pb isotope data. Earth Planet. Sci. Lett. 46, 212)20.

 

Ludwig, K. R. (1997). Isoplot. Program and documentation, version 2.95. Revised edition of U.S. Geol. Surv. Open-File report 91-445 (kludwig@bgc.org).

 

Lugmair, G. W., Scheinin, N. B. and Marti, K. (1975). Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth Planet. Sci. Lett. 27, 79)84.

 

Luo, X., Rehkamper, M., Lee, D.-C. And Halliday, A. N. (1997). High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. Int. J. Mass Spec. Ion Process. 171, 105–17.

 

McIntyre, G. A., Brooks, A. C. Compston, W and Turek, A. (1966). The statistical assessment of Rb)Sr isochrons. J. Geophys. Res. 71, 5459)68.

 

Manton, W. I. (1988). Separation of Pb from young zircons by single-bead ion exchange. Chem. Geol. (Isot. Geosci. Section) 73, 147)52.

 

Noble, S. R., Lightfoot, P. C. and Scharer, U. (1989). A new method for single-filament isotopic analysis of Nd using in situ reduction. Chem. Geol. (Isot. Geosci. Section) 79, 15)19.

 

Nier, A. O. (1940). A mass spectrometer for routine isotope abundance measurements. Rev. Sci. Instrum. 11, 212)16.

 

O’Nions, R. K., Hamilton, P. J. and Evensen, N. M. (1977). Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett. 34, 13)22.

 

O’Nions, R. K., Carter, S. R., Evensen, N. M. and Hamilton P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet. Sci. 7, 11)38.

 

Papanastassiou, D. A., Huneke, J. C., Esat, T. M. and Wasserburg, G. J. (1978). Pandora’s box of the nuclides. In: Lunar Planet. Sci. IX, Lunar Planet. Sci. Inst., Houston, Texas, pp. 859)61 (abstract).

 

Parrish, R. R. (1987). An improved micro-capsule for zircon dissolution in U)Pb geochronology. Chem. Geol. (Isot. Geosci. Section) 66, 99)102.

 

Parrish, R. R. and Krogh, T. E. (1987). Synthesis and purification of 205Pb for U)Pb geochronology. Chem. Geol. (Isot. Geosci. Section) 66, 103)10.

 

Patchett, P. J. (1980). Sr isotopic fractionation in Ca)Al inclusions from the Allende meteorite. Nature 283, 438)41.

 

Patchett, P. J. and Tatsumoto, M. (1980). A routine high-precision method for Lu)Hf isotope geochemistry and chronology. Contrib. Mineral. Petrol. 75, 263)7.

 

Pietruszka, A. J., Carlson, R. W. and Hauri, E. H. (2002). Precise and accurate measurement of 226Ra–230Th–238U disequilibria in volcanic rocks using plasma ionization multicollector mass spectrometry. Chem. Geol. 188, 171–91.

 

Potts, P. J. (1987). Handbook of Silicate Rock Analysis. Blackie, 622 p.

 

Powell, R., Hergt, J. and Woodhead, J. (2002). Improving isochron calculations with robust statistics and the bootstrap. Chem. Geol. 185, 191–204.

 

Powell, R., Woodhead, J. and Hergt, J. (1998). Uncertainties on lead isotope analyses: deconvolution in the double-spike method. Chem. Geol. 148, 95–104.

 

Richard, P., Shimizu, N. and Allegre, C. J. (1976). 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269)78.

 

Roddick, J. C., Loveridge, W. D. and Parrish, R. R. (1987). Precise U/Pb dating of zircon at the sub-nanogram Pb level. Chem. Geol. (Isot. Geosci. Section) 66, 111)21.

 

Russell, W. A., Papanastassiou, D. A. and Tombrello, T. A. (1978). Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075)90.

 

Shen, C.-C., Edwards, R. L., Cheng, H., Dorale, J. A., Thomas, R. B., Moran, S. B., Weinstein, S. E. and Edmonds, H. N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem. Geol. 185, 165–78.

 

Smythe, W. R. and Mattauch, J. (1932). A new mass spectrometer. Phys. Rev. 40, 429-

 

Tanaka, T. and Masuda, A. (1982). The La)Ce geochronometer: a new dating method, Nature 300, 515)18.

 

Thirlwall, M. F. (1982). A triple-filament method for rapid and precise analysis of rare-earth elements by isotope dilution. Chem. Geol. 35, 155)66.

 

Thirlwall, M. F. (1991a). High-precision multicollector isotopic analysis of low levels of Nd as oxide. Chem. Geol. (Isot. Geosci. Section) 94, 13)22.

 

Thirlwall, M. F. (1991b). Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem. Geol. (Isot. Geosci. Section) 94, 85)104.

 

Thirlwall, M. F. (2000). Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb204Pb double spike. Chem. Geol. 163, 299)322.

 

Thirlwall, M. F. (2002). Multicollector ICP-MS analysis of Pb isotopes using a 207Pb–204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 184, 255–79.

 

Thirlwall, M. F. and Walder, A. J. (1995). In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem. Geol. 122, 241–7.

 

Thompson J.J. (1913). Rays of Positive Electricity and their Application to Chemical Analysis, Longmans, Green and Co. Ltd.

 

Titterington, D. M. and Halliday, A. N. (1979). On the fitting of parallel isochrons and the method of maximum likelihood. Chem. Geol. 26, 183)95.

 

Todt, W., Cliff, R. A., Hanser, A. and Hofmann, A. W. (1996). Evaluation of a 202Pb –  205Pb double spike for high-precision lead isotopic analysis. In: Basu, A. and Hart, S. R. (Eds.) Earth Processes: Reading the Isotopic Code. Geophys. Monograph 95, American Geophysical Union, pp. 429–37.

 

Vance, D. and Thirlwall, M. (2002). An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–40.

 

Walder, A. J., Abell, I. D., Freedman, P. A. and Platzner, I. (1993a). Lead isotopic ratio measurement of NIST 610 glass by laser ablation-inductively coupled plasma-mass spectrometry. Spectrochim. Acta 48B, 397–402.

 

Walder, A. J. and Furuta, N. (1993). High precision lead isotope ratio measurement by inductively coupled plasma multiple collector mass spectrometry. Anal. Sci. 9, 675-80.

 

Walder, A. J., Platzner, I. And Freedman, P. A. (1993b). Isotope ratio measurement of lead, neodymium and neodymium–samarium mixtures, hafnium and hafnium–lutetium mixtures with a double focussing multiple collector inductively coupled plasma mass spectrometer. J. Anal. Atomic. Spectrom. 8, 19-23.

 

Wasserburg, G. J., Jacobsen, S. B., DePaolo, D. J. McCulloch, M. T. and Wen, T. (1981). Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45, 2311)23.

 

Wendt, I. and Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chem. Geol. (Isot. Geosci. Section) 86, 275)85.

 

White, W. M., Albarede, F. and Telouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol. 167, 257)270.

 

York, D. (1966). Least-squares fitting of a straight line. Can. J. Phys. 44, 1079)86.

 

York, D. (1967). The best isochron. Earth Planet. Sci. Lett. 2, 479)82.

 

York, D. (1969). Least-squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320)4.