15  Extinct Radionuclides


15.1     Production and decay


An ‘extinct radionuclide’ is understood to be one that was formed by a process of stellar nucleosynthesis prior to the coalescence of the solar-system, and which has subsequently decayed away to zero. Most extinct nuclides have very short half-lives, but a few have long half-lives in the millions of years range. These may have persisted in solar-system materials at high enough concentrations to generate observable variations in the isotopic composition of daughter products. These parent)daughter pairs are of interest to cosmochemists because they can provide information about the origin of the solar-system and its early history.


            The production rate of an arbitrary solar-system nuclide as a function of time is shown schematically in Fig. 15.1. After the ‘big bang’ around 13.7 Byr ago, nucleosynthetic production in stars proceeds at a rate p which may be steady or very variable, depending on the process. However, prior to condensation in the new solar nebula, it is anticipated that much or all solar-system matter was out of nucleosynthetic ‘circulation’ for a time period in some form of interstellar cloud. The time between last nucleosynthesis (‘star death’) and major condensation (‘glob formation’) is termed ) (Fig. 15.1). Determination of ) for different extinct nuclides may reveal information about the process which led to solar-system coalescence. Therefore, it is one of the major goals of isotope cosmochemistry.

Fig. 15.1. Schematic illustration of the variation in production rate (p) of a given nuclide between the ‘big bang’ and termination of nucleosynthesis, followed by a period ‘)’ prior to solar-system coalescence. After Wasserburg (1985).


            In order to derive useful information from the daughter products of extinct radionuclides, it is necessary to study material which has not been significantly re-worked during the life of the solar-system. Hence, chondritic meteorites, which appear to represent most nearly the original accretion components of the solar-system, are the main objects of study. However, for some nuclide pairs, iron and stony meteorites, which were subject to early planetary differentiation processes, may also be useful. Cosmic-ray bombardment is one process to which meteorites are particularly susceptible. This can cause nuclear transformations, which must be excluded as a mechanism for generating daughter-product anomalies before the latter are attributed to extinct parents.


            Most of the scientifically important extinct radionuclides with half-lives over 105 years are shown in Table 15.1 in order of decreasing stability, and will be discussed below. Mean lives (1/8) are quoted in Table 15.1, in addition to half-lives, because they are helpful in understanding the production history of extinct nuclides. The most long-lived of these species is the extinct p-process nuclide 146Sm (t1/2 = 103 Myr). This will be discussed briefly for the constraints it can place on very early terrestrial evolution, rather than solar-system condensation. However, another p-process nuclide (92Nb, t1/2 = 36 Myr) is omitted because of the relatively weak constraints it provides (Sconbachler et al., 2002).


                        TABLE 15.1. Some important extinct radionuclides


Parent  Daughter         Decay              Mean life          Half-life              8

                                    mode                Myr                  Myr                    yr!1


146Sm   144Nd            "                     149                  103                  6.7 H 10!9       

244Pu      various           fission               119                  82                    8.5 H 10!9

129I         129Xe              $                      23                   16                    4.3 H 10!8

247Cm     235U                 3", 2$ 22.5                15.6                 4.4 H 10!8

182Hf       182W               2$                    13                   9.0                  7.7 H 10!8

107Pd      107Ag              $                       9.4                 6.5                  1.1 H 10!7

53Mn       53Cr               $                       5.3                 3.7                  1.9 H 10!7

60Fe         60Ni               2$                      2.1                 1.5                  4.7 H 10!7

26Al         26Mg             $                       1.0                 0.7                  9.8 H 10!7

41Ca        41K                 $                       0.15               0.1                  6.7 H 10!6






Armstrong, J. T., Hutcheon, I. D., and Wasserburg, G. J. (1984). Disturbed Mg isotopic systematics in Allende CAI. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 15 (abstract).


Arnett, W. D. (1969). Explosive nucleosynthesis in stars. Astrophys. J. 157, 1369)80.


Begemann, F., and Stegmann, W. (1976). Implications from the absence of 41K anomaly in a Allende inclusion. Nature 259, 549)50.


Bennett, C. L. (2003). NASA news release (Feb 11, 2003) on results from the Wilkinson Microwave Anisotropy Probe (WMAP). (From http://www.gsfc.nasa.gov).


Bernatowicz, T. J., Podosek, F. A., Swindle, T. D. and Honda, M. (1988). I)Xe systematics in LL chondrites. Geochim. Cosmochim. Acta 52, 1113)21.


Birck, J. L. and Allegre, C. J. (1985). Evidence for the presence of 53Mn in the early solar-system. Geophys. Res. Lett. 12, 745)8.


Birck, J. L. and Allegre, C. J. (1988). Manganese)chromium isotope systematics and the development of the early solar-system. Nature 351, 579)84.


Birck, J. L., Rotaru, M. and Allegre, C. J. (1999). 53Mn53Cr evolution of the early solar system. Geochim. Cosmochim. Acta 64 411117.


Brazzle, R. H., Pravdivtseva, O. V., Meshik, A. P. and Hohenberg, C. M. (1999). Verification and interpretation of the I Xe chronometer. Geochim. Cosmochim. Acta 63, 73960.


Broecker, W. (1986). How to Build a Habitable Planet. Eldigio Press, Columbia Univ., 291 p.


Cameron, A. G. W. (1962). The formation of the sun and the planets. Icarus 1, 13)69.


Cameron, A. G. W., Hoflich, P., Myers, P. C. and Clayton, D. D. (1995). Massive supernovae, Orion gamma rays, and the formation of the Solar System. Astrophys. J. (Lett.) 447, L537.


Cameron, A. G. W. and Truran, J. W. (1977). The supernova trigger for formation of the solar-system. Icarus 30, 447)61.


Carlson, R. W. and Hauri, E. H. (2001). Extending the 107Pd–107Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim. Cosmochim. Acta 65, 183948.

Champagne, A. E., Howard, A. J., and Parker, P. D. (1983). Nucleosynthesis of 26Al at low stellar temperatures. Astrophys. J. 269, 686)8.


Chen, J. H. and Wasserburg, G. J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteorite phosphates. Earth Planet. Sci. Lett. 52, 1)15.


Chen, J. H. and Wasserburg, G. J. (1984). The origin of excess 107Ag in Gibeon (IVA) and other iron meteorites. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 144 (abstract).


Chen, J. H. and Wasserburg, G. J. (1990). The isotopic composition of Ag in meteorites and the presence of 107Pd in proto-planets. Geochim. Cosmochim. Acta 54, 1729)43.


Clayton, D. D. (1975). Extinct radioactivities: trapped residuals of presolar grains. Astrophys. J. 199, 765)9.


Clayton, D. D. (1979). Supernovae and the origin of the solar-system. Space Sci. Rev. 24, 147)226.


Crabb, J., Lewis, R. S. and Anders, E. (1982). Extinct 129I in C3 chondrites. Geochim. Cosmochim. Acta 46, 2511)26.


Dicke, R. H. (1969). The age of the galaxy from the decay of uranium. Astrophys. J. 155, 123)34.


Endress, M., Zinner, E. and Bischoff, A. (1996). Early aqueous activity on primitive meteorite parent bodies. Nature 379, 701–3.


Galer, S. J. G. and Goldstein, S. L. (1992). Further 142Nd studies of Archean rocks provide no evidence for early depletion. EOS 73, 622 (abstract).


Gilmour, J. D. and Saxton, J. M. (2001). A time-scale of formation of the first solids. Phil. Trans. Roy. Soc. Lond. A 359, 203748.


Gilmour, J. D., Whitby, J. A., Turner, G., Bridges, J. C. and Hutchison, R. (2000). The iodinexenon system in clasts and chondrules from ordinary chondrites: implications for early solar system chronology. Meteoritics and Planet. Sci. 35, 44555.


Gopel, C., Manhes, G. and Allegre, C. J. (1994). UPb systematics of phosphates from equilibrated ordinary chondrites. Earth Planet. Sci. Lett. 121, 15371.


Hagee, B., Bernatowicz, T. J., Podosek, F. A., Johnson, M. L., Burnett, D. S. and Tatsumoto, M. (1990). Actinide abundances in ordinary chondrites. Geochim. Cosmochim. Acta 54, 2847)58.


Halliday, A. N. (2002). Cited by Fitzgerald, R. in: Isotope ratio measurements firm up knowledge of Earth’s formation. Physics Today 56 (1), 16–18.

Harper, C. L. (1996). Astrophysical site of the origin of the Solar System inferred from extinct radionuclide abundances. Astrophys. J. 466, 102638.


Harper, C. L. and Jacobsen, S. B. (1992). Evidence from coupled 147Sm)143Nd and 146Sm)142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360, 728)32.


Harper, C. L. and Jacobsen, S. B. (1996). Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochim. Cosmochim. Acta 60, 113153.


Harper, C. L., Volkening, J., Heumann, K. G., Shih, C.-Y. and Weismann, H. (1991). 182Hf182W: new cosmochronometric constraints on terrestrial accretion, core formation, the astrophysical site of the r-process, and the origin of the Solar System. Lunar Planet. Sci. XXII, 5156.


Hartman, W. K. (1986). Moon origin: the impact-trigger hypothesis. In: Hartman, W. K., Philips, R. J. and Taylor, G. J. (Eds.), Origin of the Moon, Lunar Planet. Institute, pp. 579608.


Hauri, E. H., Carlson, R. W. and Bauer, J. (2000). The timing of core formation and volatile delpetion in solar system objects from high-precision 107Pd–107Ag isotope systematics. Lunar Planet. Sci. 31, 1812.


Hohenberg, C. M. (1969). Radioisotopes and the history of nucleosynthesis in the galaxy. Science 166, 212)5.


Hohenberg, C. M., Podosek, F. A. and Reynolds, J. H. (1967). Xenon)iodine dating: sharp isochronism in chondrites. Science 156, 233)6.


Hutcheon, I. D., Armstrong, J. T., and Wasserburg, G. J. (1984). Excess in 41K in Allende CAZ: confirmation of a hint. In: Lunar Planet. Sci. XV, Lunar Planet. Inst., 387)8 (abstract).


Hutcheon, I. D. and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature 337, 238)41.


Hutcheon, I. D., Krot, A. N., Keil, K., Phinney, D. L. and Scott, E. R. D. (1998). 53Mn53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. Science 276, 18657.


Jacobsen, S. B. and Harper, C. L. (1996). Accretion and early differentiation history of the Earth based on extinct radionuclides. In: Hart, S. and Basu, A. (Eds), Earth Processes: Reading the Isotopic Code. Geophys. Monograph 95, Amer. Geophys. Union, pp. 4774.


Jeffrey, P. M., and Reynolds, J. H. (1961). Origin of excess 129Xe in stone meteorites. J. Geophys. Res. 66, 3582)3.


Kelly, W. R., and  Wasserburg, G. J. (1978). Evidence for the existence of 107Pd in the early solar-system. Geophys. Res. Lett. 5, 1079)82.


Kita, N. T., Nagahara, H., Togashi, S. and Morshita, Y. (2000). A short duration of chondrule formation in the solar nebula: evidence from Al-26 in Semarkona ferromagnesian chondrules.  Geochim. Cosmochim. Acta 64, 3913–22.


Kleine, T., Munker, C., Mezger, K. and Palme, H. (2002). Rapid accretion and early coreformation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–5.


Lee, D.-C. and Halliday, A. N. (1995). Hafniumtungsten chronometry and the timing of terrestrial core formation. Nature 378, 7714.


Lee, D.-C. and Halliday, A. N. (1996). Hf–W isotopic evidence for rapid accretion and differentiation in the early solar system. Science 274, 1876–9.


Lee, D.-C. and Halliday, A. N. (2000). HfW internal isochrons for ordinary chondrites and the initial 182Hf180Hf of the solar system. Chem. Geol. 169, 35 43.


Lee, D.-C., Halliday, A. N., Snyder, G. A. and Taylor, L. A. (1997). Age and origin of the Moon. Science 278, 10981103.


Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 3, 109)13.


Lee, T., Papanastassiou, D. A. and Wasserburg, G. J. (1977). Aluminum-26 in the early solar-system: Fossil or fuel? Astrophys. J. (Lett.) 211, L107)10.


Lee, T. (1978). A local proton irradiation model for isotopic anomalies in the solar system. Astrophys. J. 224, 217)26.


Lee, T., Shu, F. H., Shang, H., Glassgold, A. E. and Rehm, K. E. (1998). Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys. J. 506, 898912.


Lewis, R. S., Amari, S. and Anders, E. (1990). Meteoritic silicon carbide: pristine material from carbon stars. Nature 348, 293)8.


Lineweaver, C. H. (1999). A younger age for the universe. Science 284, 1503–7.


Lugmair, G. W. and Marti, K. (1977). Sm)Nd)Pu timepieces in the Angra dos Reis meteorite. Earth Planet. Sci. Lett. 35, 273)84.


Lugmair, G. W. and Shukolykov, A. (1998). Early solar system timescales according to  53Mn53Cr systematics. Geochim. Cosmochim. Acta 62, 286386.


Mahoney, W. A., Ling, J. C., Wheaton, W. A., Jacobsen, A. S. (1984). HEAO-3 discovery of 26Al in the interstellar medium. Astrophys. J. 286, 578)85.


Marhas, K. K., Goswami, J. N. and Davis, A. M. (2002). Short-lived nuclides in hibonite grains from Murchison: evidence for Solar System evolution. Science 298, 2182–5.


McCulloch, M. T. and Bennett, V. C. (1993). Evolution of the early Earth: constraints from 143Nd)142Nd isotopic systematics. Lithos 30, 237)55.


McKeegan, K. D., Chaussidon, M. and Robert, F. (2000). Incorporation of short-lived 10Be in a calcium aluminum-rich inclusion from the Allende meteorite. Science 289, 13347.


Nichols, R. H., Hohenberg, C. M., Kehm, K., Kim, Y. and Marti, K. (1994). I–Xe studies of the Acapulco meteorite: absolute I–Xe ages of individual phosphate grains and the Bjurbole standard. Geochim. Cosmochim. Acta 58, 2553–61.


Niemeyer, S. (1979). I)Xe dating of silicate and troilite from IAB iron meteorites. Geochim. Cosmochim. Acta 43, 843)60.


Norman, E. B. and Schramm, D. N. (1983). 182Hf chronometer for the early Solar System. Nature 304, 5157.


Nuth, J. (1991). Small grains of truth. Nature 349, 18)19.


Nyquist, L., Lindstrom, D., Mittlefehldt, D., Shih, C.-Y., Wiesmann, H., Wentworth, S. and Martinez, R. (2001). Manganese–chromium formation intervals for chondrules from Bishunpur and Chainpur meteorites. Meteoritics and Planet. Sci. 36, 911–38.


Ott, U. (2000). Salty old rocks. Science 288, 17612.


Podosek, F. A. (1970). Dating of meteorites by the high-temperature release of iodine-correlated Xe-129. Geochim. Cosmochim. Acta 34, 341)65.


Reynolds, J. H. (1960). Determination of the age of the elements. Phys. Rev. Lett. 4, 8)9.


Rotaru, M., Birck, J. L. and Allegre, C. J. (1992). Clues to early solar-system history from chromium isotopes in carbonaceous chondrites. Nature 358, 465)70.


Russell, S. S., Gounelle, M. and Hutchison, R. (2001). Origin of short-lived radionuclides. Phil. Trans. Roy. Soc. Lond. A 359, 19912004.


Russell, S. S., Srinivasan, G., Huss, G. R., Wasserburg, G. J. and MacPherson, G. J. (1996). Evidence for widespread 26Al in the Solar Nebula and constraints for nebular time scales. Science 273, 75762.


Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L. and Lewis, R. S. (1998). A stellar origin for the short-lived nuclides in the early Solar System. Nature 391, 55961.


Schoenberg, R., Kamber, B. S., Collerson, K. D. and Eugster, O. (2002a). New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochim. Cosmochim. Acta 66, 3151–60.


Schoenberg, R., Kamber, B. S., Collerson, K. D. and Moorbath, S. (2002b). Tungsten isotope evidence from ~3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418, 403–5.


Schonbachler, M., Rehkamper, M., Halliday, A. N., Lee, D.-C., Bourot-Denise, M., Zanda, B., Hattendort, B. and Gunther, D. (2002). Niobium–zirconium chronometry and early solar system development. Science 295, 1705–8.


Schramm, D. N. and Wasserburg, G. J. (1970). Nucleochronologies and the mean age of the elements. Astrophys. J. 162, 57)69.


Seeger, P. A., Fowler, W. A. and Clayton, D. D. (1965). Nucleosynthesis of heavy elements by neutron capture. Astrophys. J. Supp. 11, 121)66


Sharma, M., Papanastassiou, D. A., Wasserburg, G. J. and Dymek, R. F. (1996). The issue of the terrestrial record of Sm-146. Geochim. Cosmochim. Acta 60, 2037–47.


Shu, F. H., Shang, H., Glassgold, A. E. and Lee, T. (1997). X-rays and fluctuating X-winds from protostars. Science 277, 14759.


Shu, F. H., Shang, H. and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science 271, 154551.


Shukolyukov, A. and Lugmair, G. W. (1993a). Live iron-60 in the early solar system. Science 259, 1138)42.


Shukolyukov, A. and Lugmair, G. W. (1993b). 60Fe in eucrites. Earth Planet. Sci. Lett. 119, 159)66.


Srinivasan, G., Goswami, J. N. and Bhandari, N. (1999). 26Al in eucrite Piplia Kalan: plausible heat source and formation chronology. Science 284, 134850.  


Srinivasan, G., Sahijpal, S., Ulyanov, A. A. and Goswami, J. N. (1996). Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early Solar System. Geochim. Cosmochim. Acta 60, 182335.


Srinivasan, G., Ulyanov, A. A. and Goswami, J. N. (1994). 41Ca in the early Solar System. Astrophys. J. (Lett.) 431, L6770.

Steele, I. M. and Hutcheon, I. D. (1979). Anatomy of Allende inclusions: mineralogy and Mg isotopes in two Ca)Al-rich inclusions. In: Lunar Planet. Sci. X, Lunar Planet. Inst., 11668 (abstract).


Sugiura, N., Shuzou, Y. and Ulyanov, A. (2001). Berylliumboron and aluminiummagnesium chronology of calciumaluminium-rich inclusions in CV chondrites. Meteoritics and Planet. Sci. 36, 13971408.


Swindle, T. D., Caffee, M. W., Hohenberg, C. M., Lindstrom, M. M. and Taylor, G. J. (1991). Iodine)xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochim. Cosmochim. Acta 55, 861)80.


Swindle, T. D., Davis, A. M., Hohenberg, C. M., MacPherson, G. J. and Nyquist, L. E. (1996). Formation times of chondrules and Ca–Al-rich inclusions: constraints from short-lived radionuclides. In: Hewins, R. H., Jones, R. H. and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Nebula. Cambridge Univ. Press, pp. 77–86.


Tachibana, S. and Huss, G. R. (2003) Iron-60 in troilites from an unequilibrated ordinary chondrite and the initial Fe-60/Fe-56 in the early solar system. Lunar and Planetary Science XXXIV, abstract # 1737.


Trivedi, B. M. P. (1977). A new approach to nucleocosmochronology. Astrophys. J. 215, 877)84.


Truran, J. W., and Cameron, A. G. W. (1978). 26Al production in explosive carbon burning. Astrophys. J. 219, 226)9.


Wasserburg, G. J. (1985). Short-lived nuclei in the early solar-system. In: Black, D. C. and Matthews, M. S. (Eds), Protostars and Planets. Univ. Arizona Press, pp. 703)37.


Wasserburg, G. J., Busso, M. and Gallino, R. (1996). Abundances of actinides and short-lived non-actinides in the interstellar medium: diverse supernova sources for the r-process. Astrophys. J. (Lett.) 431, L109113.


Wasserburg, G. J., Fowler, W. A. and Hoyle, F. (1960). Duration of nucleosynthesis. Phys. Rev. Lett. 4, 112)14.


Wasserburg, G. J. and Hayden, R. J. (1955). Time interval between nucleogenesis and the formation of meteorites. Nature 176, 130)1.


Wasserburg, G. J., Lee, T. and Papanastassiou, D. A. (1977). Correlated O and Mg isotopic anomalies in Allende inclusions: II magnesium. Geophys. Res. Lett. 4, 299)302.


Wasserburg, G. J. and Papanastassiou, D. A. (1982). Some short-lived nuclides in the early solar-system ) a connection with the placental ISM. In: Barnes, C. A., Clayton, D. D. and Schramm, D. N. (Eds), Essays in Nuclear Astrophysics. Cambridge Univ. Press, pp. 77)140.


Wasserburg, G. J., Schramm, D. N. and Huneke, J. C. (1969). Nuclear chronologies for the galaxy. Astrophys. J. (Lett.) 157, L91)6.


Whitby, J. A., Gilmour, J. D., Turner, G., Prinz, M. and Ash, R. D. (2002). Iodinexenon dating of chondrules from Qingzhen and Kota Kota enstatite chondrites. Geochim. Cosmochim. Acta 66, 34759.


Yin, Q., Jacobsen, S. B., Yamashita, K., Blichert-Toft, J., Telouk, P. and Albarede, F. (2002). A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature 418, 949–52.


Zinner, E., Amari, S., Anders, E. and Lewis, R. (1991). Large amounts of extinct 26Al in interstellar grains from the Murchison meteorite. Nature 349, 51)4.